## All You Need is Supervised Learning

## Erom Imitation Fearning to Meta-KF Mith Upside Down RL

Upside down RL flips the use of the return in the objective in RL, taking returns as input and predicting actions

Trained using supervised learning: simple for offline, akin to expectation maximisation for online

Commands, c, are any computational predicates that are consistent with the data, for example, the desired time horizon, d<sup>H</sup>, and return, d<sup>R</sup>

Removing d<sup>R</sup> recovers IL, adding g recovers GCRL; but further predicates can be used for self-supervised learning

Recurrent nets solve POMDPs, set-equivariant nets allow dynamic observations/actions/commands - enabling a single model to solve all RL tasks

## One Model LSTM + Perceiver IO

One Loss Cross-entropy

## One Algorithm

**Require:** environment E, policy  $\pi(a|o,c,h)$ , memory D

**function**  $reset(E,\pi,D)$ Reset environment E and  $\pi$ 's hidden state hGet initial observation and goal (o,g) from ESample c based on D and (o,g)

Train  $\pi$  on batches from  ${\it D}$  if performing IL or offline RL without environment interaction then  ${\it return}$ 

while true do

Act with  $a,h \sim \pi(a|o,c,h)$ Observe  $(o',r,g',\mathbf{1}_{\text{terminal}})$  from environment transition
Update D with  $(o,a,r,g,\mathbf{1}_{\text{terminal}})$ Update h (to contain a and r) and cTrain  $\pi$  on batches from Dif  $\mathbf{1}_{\text{terminal}}$  then  $reset(E,\pi,D)$ 



Experiments on CartPole variants: online RL, IL, offline RL, GCRL, meta-RL

Minimalist codebase to facilitate further exploration of UDRL!









Kai Arulkumaran, Dylan R. Ashley, Jürgen Schmidhuber & Rupesh K. Srivastava



