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Summary

Reward‐Weighted Regression (RWR) uses Expectation‐Maximization
for Reinforcement Learning
Leads to a widely studied family of simple algorithms that are known to
yield monotonic policy improvement
Open Question: do these algorithms learn the optimal policy?

We present the first proof that RWR converges to a global optimum
when no function approximation is used

Background

M = (S, A, pT , R, γ, µ0) an MDP where:

S ⊂ RnS (A ⊂ RnA) is a compact state (action) space with measurable
structure (S, B(S), µS), ((A, B(A), µA)) where µS (µA) is a fixed, finite, strict
positive reference measure. states and actions with discrete and cont. components
pT (s′|s, a) is a density of the transition kernel, which is assumed
continuous in total variation.
R(s, a) is a continuous, bounded, positive reward function.
γ ∈ (0, 1) discount factor, µ0(s) initial state probability density.

• return Rt := ∑∞
k=0 γkR(st+k+1, at+k+1), • state‐value function V π(s) :=

Eπ[Rt|st = s], • action‐value function Qπ(s, a) := Eπ[Rt|st = s, at = a].

Reward-Weighted Regression (RWR)

RWR [1, 3, 2] starts from an initial policy π0 and generates a sequence of
policies (πn). Each iteration consists of two steps:

1. a batch of episodes is generated using the current policy πn,
2. a new policy πn+1 is fitted to a sample representation of πn, weighted by
the return Rt.

πn+1 = arg max
π∈Π

E
s∼dπn(·),a∼πn(·|s)

[
E

Rt∼p(·|st=s,at=a,πn)
[Rt log π(a|s)]

]
, (1)

which is equivalent to (see Theorem 3.1 for details)

πn+1(a|s) = Qπn(s, a)πn(a|s)
V πn(s)

. (2)

Monotonic Improvement Theorem (MIT)

(see Theorem 4.1) Fix arbitrary s ∈ S . The following holds
V πn+1(s) ≥ V πn(s), (∀a ∈ A) : Qπn+1(s, a) ≥ Qπn(s, a). (3)

Moreover, if Vara∼πn(a|s)[Qπn(s, a)] > 0 the first inequality above is strict.
When can there be no improvement?

Deterministic policies
Stochastic policies which are greedy of their action‐value function
(optimal policies)

Convergence Results

Problems/Motivation :

Desirable limit‐points (optimal policies) are not always dominated by
reference measure µA. Note: E.g., consider µA being Lebesgue measure, πn being
densities with respect to µA, and optimal policy π∗ being a kernel concentrating
concentrating all mass in single action for some state.
Optimal policy π∗(·|s) can be non‐unique, thanks to arg max Q∗(s, ·)
consisting of multiple points (Q∗ stands for optimal value function).

Used notion of convergence:(For details see Definition 1 in the paper.)
Let A be a metric space, F ⊂ A a compact subset, ν the quotient map
ν : A → A/F (A/F being topological factor). A sequence of probability
measures Pn is said to converge weakly relative to F to a measure P de‐
noted

Pn →w(F ) P,

if and only if the image measures of Pn under ν converge weakly to the
image measure of P under ν:

νPn →w νP.

Trivial Facts: Boundedness of value functions Vn(s) < BV , Qn(s, a) < BV ,
BV < +∞ and MIT implies existence of point‐wise limits VL and QL:

V πn(s) ↗ VL(s) ≤ BV < +∞
Qπn(s, a) ↗ QL(s, a) ≤ BV < +∞,

but to prove something about limiting properties of the sequence (πn) is a
difficult problem (see Convergence Results section in the paper).

Further notation:
M(s) := arg max QL(s, ·)
ΠL the set of all probability kernels, greedy with respect to QL, i.e.
πL ∈ ΠL =⇒ (∀s ∈ S)πL(·|s)(M(s)) = 1
πn(·|s) · µA stands for the probability kernel formed by reference
measure µA and the conditional density πn

Convergence Theorem (see Theorem 5.1):
Let the initial policy π0 be positive and continuous in actions. Then

(∀πL ∈ ΠL, ∀s ∈ S) : πn(·|s) · µA →w(M(s)) πL(·|s),
where ΠL is a set of optimal policies for the MDP. Moreover, VL, QL are the
optimal state and action value functions.

A M(s)

QL(·, s)πL(·, s)

πn(·, s) · µA

A/M(s)
ν(M(s))

νπL(·, s)

ν(πn(·, s) · µA)

ν

Demonstration of RWR Convergence

Convergence of RWR on a modified four‐room gridworld domain:

Conclusion

We provided the first global convergence proof for RWR in absence of
reward transformation and function approximation.
• assumes general compact state and action spaces =⇒ robotic control.
• provides solid theoretical ground for both previous and future works on RWR
[1, 3, 2] and understanding similar algorithms

• Techniques developed in the proof are further applicable. Demonstrated on proof
of R‐linear convergence order for finite case.

Established relationship between improvement of state value function
and variance of action‐value function with respect to policy action
distribution.
We also highlighted that nonlinear reward transformations used in
prior work can lead to problems, potentially resulting in changes to the
optimal policy.
Discussion of undiscounted setting allowing for zero rewards.
Adaptation of Portmanteau theorem for relative weak convergence.
Established R‐linear convergence for finite case.
Provided two examples: one for finite case exhibiting Q‐linear rate, and
one for continuous case exhibiting sublinear order.

FutureWork & References

RWR's convergence under function approximation.
RWR's convergence in off‐policy settings (Importance Sampling)
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