Reward-Weighted Regression Converges to a Global Optimum
Miroslav Strupl®, Francesco Faccio?, Dylan R. Ashley?, Rupesh Kumar Srivastava? Jirgen Schmidhuber!23

'The Swiss Al Lab IDSIA/USI/SUPSI, Lugano, Switzerland *“NNAISENSE, Lugano, Switzerland

{struplm, francesco, dylan.ashleyl@idsia.ch, rupesh@nnaisense.com, juergen@idsia.ch

SKAUST, Thuwal, Saudi Arabia

Istituto

Dalle Molle I
di studi

sull'intelligenza

artificiale

IDSTA

Summary

= Reward-Weighted Regression (RWR) uses Expectation-Maximization
for Reinforcement Learning

= Leads to a widely studied family of simple algorithms that are known to
vield monotonic policy improvement

= Open Question: do these algorithms learn the optimal policy?

We present the first proof that RWR converges to a global optimum
when no function approximation is used

Background
M= (S, A, pr, R,~, uy) an MDP where:

= S C R™ (A C R™)is a compact state (action) space with measurable
structure (S, B(S), us), (A, B(A), na)) where ugs (14) is a fixed, finite, strict
positive reference measure. states and actions with discrete and cont. components

= pr(s’ls, a) is a density of the transition kernel, which is assumed
continuous in total variation.

= R(s,a) is a continuous, bounded, positive reward function.
= v € (0, 1) discount factor, ug(s) initial state probability density.

o return R, = S V¥ R(Sithe1, arne1), ® State-value function V7(s) :=
© | Re|s; = s|, @ action-value function Q™ (s, a) := E;|R|s; = s,a; = al.

Reward-Weighted Regression (RWR)

RWR [1, 3, 2] starts from an initial policy 7y and generates a sequence of
policies (m,). Each iteration consists of two steps:

1. a batch of episodes is generated using the current policy m,,

7. anew policy m,41 Is fitted to a sample representation of «,,, weighted by
the return R..

T, = arg max D D Ry log m(als)]| , (1)
o %EH svdm™(-),anvmy(-|s) | Revp(-|si=s,0=a,m,) Bilogm(a )]
which is equivalent to (see Theorem 3.1 for details)

(s, a)m,(als

Vi(s)

Monotonic Improvement Theorem (MIT)

(see Theorem 4.1) Fix arbitrary s € S. The following holds
Vi(s) > V™(s), (Vae A): Q™ (s,a) > Q™(s,a). (3)
Moreover, if Var,x (415|@™ (s, a)| > 0 the first inequality above is strict.

When can there be no improvement?

= Deterministic policies
= Stochastic policies which are greedy of their action-value function
(optimal policies)

Convergence Results

Problems/Motivation :

= Desirable limit-points (optimal policies) are not always dominated by
reference measure 4. Note: E.g., consider uy being Lebesgue measure, m, being
densities with respect to 4, and optimal policy 7* being a kernel concentrating
concentrating all mass in single action for some state.

= Optimal policy 7*(+|s) can be non-unique, thanks to arg max Q*(s, -)
consisting of multiple points (Q* stands for optimal value function).

Used notion of convergence:(For details see Definition 1 in the paper.)
Let A be a metric space, F' C A a compact subset, v the quotient map
v: A— A/F (A/F being topological factor). A sequence of probability
measures P, is said to converge weakly relative to F' to a measure P de-
noted

p, —»v p

if and only if the image measures of P, under v converge weakly to the
image measure of P under v:

vP, - vP.

Trivial Facts: Boundedness of value functions V,,(s) < By, Q.(s,a) < By,
By < +o0 and MIT implies existence of point-wise limits V;, and Q.

V™(s) /Vi(s) < By < 40
Q™ (s,a) /" Qrls,;a) < By < +00,
but to prove something about limiting properties of the sequence (m,) Is a
difficult problem (see Convergence Results section in the paper).

Further notation:

* M(s) :=argmax Qr(s, ")

= [I; the set of all probability kernels, greedy with respect to @)y, i.e.
np €1l = (Vs € S)mr(-]s)(M(s)) =1

= m,(+|s) - pa stands for the probability kernel formed by reference
measure u4 and the conditional density m,

Convergence Theorem (see Theorem 5.1):
Let the initial policy 7y be positive and continuous in actions. Then

(Vrp € I1,Vs € S) 1 mu(+|s) - pa i) mr(-|s),

where II; Is a set of optimal policies for the MDP. Moreover, Vi, Q, are the
optimal state and action value functions.

Demonstration of RWR Convergence

Convergence of RWR on a modified four-room gridworld domain:
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Conclusion

= We provided the first global convergence proof for RWR in absence of
reward transformation and function approximation.

® assumes general compact state and action spaces = robotic control.

® provides solid theoretical ground for both previous and future works on RWR
|1, 3, 2] and understanding similar algorithms

® Techniques developed in the proof are further applicable. Demonstrated on proof
of R-linear convergence order for finite case.

= Established relationship between improvement of state value function
and variance of action-value function with respect to policy action
distribution.

= We also highlighted that nonlinear reward transformations used in
prior work can lead to problems, potentially resulting in changes to the
optimal policy.

= Discussion of undiscounted setting allowing for zero rewards.

= Adaptation of Portmanteau theorem for relative weak convergence.

= Established R-linear convergence for finite case.

= Provided two examples: one for finite case exhibiting Q-linear rate, and
one for continuous case exhibiting sublinear order.

Future Work & References

= RWR's convergence under function approximation.
= RWR's convergence in off-policy settings (Importance Sampling)
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